Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends.
نویسندگان
چکیده
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.
منابع مشابه
Measuring microtubule thickness: an exercise in cooperativity.
Doublecortin (DCX), a microtubule-associated protein, is essential for neuronal migration, although a clear mechanistic understanding of this requirement remains elusive. In this issue of Developmental Cell, Bechstedt and Brouhard (2012) report that DCX relies on cooperative binding and an affinity for growing microtubule ends to nucleate and stabilize 13-protofilament microtubules.
متن کاملMechanism of microtubule stabilization by doublecortin.
Neurons undertake an amazing journey from the center of the developing mammalian brain to the outer layers of the cerebral cortex. Doublecortin, a component of the microtubule cytoskeleton, is essential in postmitotic neurons and was identified because its mutation disrupts human brain development. Doublecortin stabilizes microtubules and stimulates their polymerization but has no homology with...
متن کاملDoublecortin Recognizes the Longitudinal Curvature of the Microtubule End and Lattice
BACKGROUND Microtubule ends have distinct biochemical and structural features from those of the lattice. Several proteins that control microtubule behavior can distinguish the end of a microtubule from the lattice. The end-binding protein EB1, for example, recognizes the nucleotide state of microtubule ends, which are enriched in GTP-tubulin. EB1 shares its binding site with Doublecortin (DCX),...
متن کاملTemplate-free 13-protofilament microtubule–MAP assembly visualized at 8 Å resolution
Microtubule-associated proteins (MAPs) are essential for regulating and organizing cellular microtubules (MTs). However, our mechanistic understanding of MAP function is limited by a lack of detailed structural information. Using cryo-electron microscopy and single particle algorithms, we solved the 8 Å structure of doublecortin (DCX)-stabilized MTs. Because of DCX's unusual ability to specific...
متن کاملEB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice
Plus-end-tracking proteins (+TIPs) are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2012